COMPARISON OF TWO DIFFERENT DOSES OF ORAL MIDAZOLAM PREMEDICATION ON INDUCTION DOSE AND CHARACTERISTICS OF PROPOFOL: A DOUBLE BLIND STUDY

Dr Mukesh Choudhary¹, Dr Neeti Mahla²

¹Senior Resident, Department of Anaesthesia, Government Medical College, Barmer, Rajasthan
²Senior Resident, Department of Obstetrics and Gynaecology, Government Medical College, Barmer, Rajasthan

Article Info: Received 27 June 2021; Accepted 02 August 2021
DOI: https://doi.org/10.32553/ijmbs.v5i8.2079
Corresponding author: Dr Neeti Mahla
Conflict of interest: No conflict of interest.

Abstract
Background: Midazolam is a water-soluble, short acting benzodiazepine. The objective of our study was to study the effect of two different doses of oral midazolam premedication on propofol induction dose and characteristics.
Methods: Randomized, prospective, double blind study conducted on 100 ASA I and II patients, falling between the age group of 18-60 yrs were randomly divided in to two groups, group I and group II, who received 7.5mg and 15mg midazolam orally 45 mins before the surgery respectively.
Results: Mean time taken for induction in group-A was significantly higher in group-I as compare to group-II. No significant difference was noted with respect to degree of sedation, changes in the heart rate and means arterial pressure, oxygen saturation between the two groups.
Conclusion: Our study concluded that 15mg midazolam premedication offers more benefits than 7.5mg midazolam by reducing induction dose of propofol without any undesirable effects like excess sedation, bradycardia and hypotension.
Keywords: Midazolam, Induction, Premedication

Introduction
Midazolam is a water-soluble, short acting benzodiazepine used in the emergency treatment of prolonged seizures. It is classified as a Restricted Schedule 4 drug and is available by prescription only.¹ Anxiety in response to impending surgery is a common emotional phenomenon, but it also leads to perioperative physiological and psychological changes. The major goal of pre-medication is to allay anxiety. An ideal pre-medicant should have a non-invasive route of administration, rapid and reliable onset, rapid elimination, consistent and predictable results and good patient acceptance. At the same time, it should also be free of side effects like haemodynamic instability, respiratory obstruction and delayed recovery.²,³

Materials and Methods
Design of the Study: The type of study was randomized, prospective, double blind study.

Inclusion Criteria:
- Adult patients of either sex, of ASA grade I or II,
- Age group between 18-60 yrs
- Weights ranging from 40-70 kg,
- Presenting for elective surgery under general anaesthesia were included in the study

Exclusion criteria:
- Patients who were taking centrally acting drugs like benzodiazepines, antidepressants.
- Patients who were on beta blockers.
- Patients with history of allergy to midazolam.
- Pregnant women.
- The patients (subjects) were randomly divided in to 2 groups

Anaesthesiologist 1 blinded to the induction sequence administered the oral midazolam premedication to both the groups.

1. Group I - received 1 oral midazolam tablet (7.5mg) 45 min before surgery.
2. Group II - received 2 oral midazolam tablets (15mg) 45mins before surgery.

Data analysis
Collected data was analyzed by paired and unpaired ‘t’ test. Data was summarized and presented in the form of mean, S.D. percentages and by diagrams. A confidence interval was calculated for the doses at which the end points were achieved. For the analysis of significance Chi-square test was used to obtain other possible association.

Results
100 patients with ASA physical status 1 and 2 were selected for the study. They were randomly allocated in to two groups of 30 each –Group A (Midazolam 7.5mg) and group B (Midazolam 15mg).
Table 1: Socio-demographic variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group-I</th>
<th>Group-II</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in yrs</td>
<td>34.21±7.26</td>
<td>33.69±6.81</td>
<td>>0.05</td>
</tr>
<tr>
<td>Sex (F:M)</td>
<td>35:15</td>
<td>37:13</td>
<td>>0.05</td>
</tr>
<tr>
<td>ASA I:II</td>
<td>43:7</td>
<td>46:4</td>
<td>>0.05</td>
</tr>
</tbody>
</table>

The both group were comparable.

Table 2: Clinical endpoint

<table>
<thead>
<tr>
<th>Clinical endpoint</th>
<th>Group-I</th>
<th>Group-II</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint -1</td>
<td>106.23±16.35</td>
<td>78.36±19.36</td>
<td>0.01</td>
</tr>
<tr>
<td>Endpoint -2</td>
<td>182.39±16.32</td>
<td>94.36±19.16</td>
<td>0.01</td>
</tr>
<tr>
<td>Endpoint -3</td>
<td>194.31±17.26</td>
<td>146.32±15.36</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Mean time taken for induction in group-I was significantly higher in group-A as compare to group-II. No significant difference was noted with respect to degree of sedation, changes in the heart rate and means arterial pressure, oxygen saturation between the two groups (p>0.05).

Discussion

Combination of drugs has long been used by anaesthesiologists because no single agent provides all components of general anaesthesia. Also the synergistic action between drugs helps to decrease the dose of a single agent leading to fewer side effects.

Both midazolam and propofol act partially through the same inhibitory transmitter Gamma Amino Butyric Acid located in post synaptic membrane. Their synergy in pharmacologic profiles makes it an excellent combination for co-induction.

Propofol is the most frequently used intravenous anaesthetic today. Though it causes smooth induction, rapid and more complete awakening, it is associated with significant decreases in arterial blood pressure. This decrease in blood pressure is a dose dependent phenomenon and can be avoided by reducing the dose of propofol.

Although in our study we did not observe any significant difference in the degree of sedation between the two groups, group B patients had higher sedation scores compared to group A.

Eren and colleagues compared dexmedetomidine and three different doses of midazolam in preoperative sedation. Dexmedetomidine 1µg/kg and midazolam 0.02mg/kg, 0.04mg/kg, 0.06mg/kg were compared. They observed marked sedation in dexmedetomidine group and midazolam 0.06mg/kg group but of shorter duration in midazolam group because of shorter half-life of midazolam. This study shows midazolam can cause marked but short duration of sedation.
Trivedi and co-workers8 compared the sedation characteristics of intranasal and sublingual midazolam 0.3mg/kg in 60 paediatric patients referred for body MRI. They observed that the patients of both the groups were adequately sedated without any adverse effects.

Wilder-Smith and colleagues9 investigated the propofol requirements for multiple anaesthetic end points in midazolam premedicated patients. They observed that midazolam 0.05mg/kg prior to induction reduced the propofol requirements for multiple end points.

Adachi and others10 showed that the administration of small doses of midazolam (10µg/kg) decreases the time to achieve hypnosis when compared to placebo. In their study the time required to achieve hypnosis was 180 seconds in midazolam group compared to 262 seconds in placebo group (reduction by 31%).

Conclusion

We conclude from our study that oral premedication with midazolam 15mg offers more benefits than midazolam 7.5mg in reducing the propofol dose requirements without any undesirable effects like excess sedation, bradycardia or hypotension.

References

8. Trivedi V, Doshi R, Dhuniya K. Evaluation of sedation characteristics of intranasal midazolam versus sublingual midazolam in paediatric patients undergoing magnetic resonance imaging. The Internet Journal of Anesthesiology 2010; 27(2).
